
Quicksort
Randomized Algorithms: Week 2

Summer HSSP 2023
Emily Liu

Sorting Algorithms

Task: Given a list A of comparables, arrange them in increasing order.

- Comparable: for all elements (a, b) in A, we can say exactly one of the
following is true:

- a > b
- a < b
- a = b

Question: What sorting algorithms do you know?

Selection Sort

SELECTION_SORT(A):

 for i = 1 ... N-1:

 min_idx = i

 for j = i+1 ... N:

 if A[j] < A[min_idx]:

 min_idx = j

 endif

 endfor

 swap A[min_idx], A[i]

 endfor

High level algorithm: At each step, find
minimum element in unsorted portion
of array, swap with current element.

Questions:

- What is the time complexity of
selection sort?

- What is the space complexity of
selection sort?

Insertion Sort

INSERTION_SORT(A):

 for j = 2 ... N:

 key = A[j]

 i = j - 1

 while (A[i] > key and i > 0):

 swap(A[i+1], A[i])

 i++

 endwhile

 A[i+1] = key

 endfor

High level algorithm: At each step, take
first element of unsorted portion of the
array, insert it into the right place in the
sorted portion of the array.

Questions:

- What is the time complexity of
insertion sort?

- What is the space complexity of
insertion sort?

Merge Sort
MERGE_SORT(A):

 A_left = MERGE_SORT(A[0:N/2])

 A_right = MERGE_SORT(A[N/2:N])

 A = MERGE(A_left, A_right)

MERGE(A_left, A_right):

 l, r, count = 0; merged = empty array

 while count < N:

 merged = min(A_left[l], A_right[r])

 if A_left[l] < A_right[r]: l++, else: r++

 count++

 endwhile

High level algorithm: Recursively break
down the array into halves and sort, then
merge the sorted halves in linear time.

Questions:

- What is the time complexity of merge
sort?

- What is the space complexity of
merge sort?

Comparison of Sorting Algorithms

Algorithm Time Complexity Space Complexity

Selection Sort O(n2) O(1)

Insertion Sort O(n2) average/worst case
O(n) best case

O(1)

Merge Sort O(n log n) O(n)

In-place Merge Sort O(n2 log n) O(1)

Quick Sort

QUICK_SORT(A):

 1. Select a pivot index, p.

 2. Denote subarrays L (less), E (equal), G (greater)

 3. Rearrange array such that:

 all elements in L are to the left of A[p],

 all elements in G are to the right of A[p]

 4. Recursively sort L and G using QUICK_SORT.

Space complexity of Quicksort

Claim: We can perform quicksort in-place.
Procedure:
1. Select A[N-1] (last element) to be pivot.
2. Define counters L = 0 … N-2; R = N-2 … 0.
3. Advance L and R until A[L] > pivot, A[R] < pivot
4. Swap A[L], A[R]
5. Continue until L = R
6. Insert pivot into right place
Question: What is the time complexity of this procedure?

Pivot Selection

Quicksort algorithm:

1. Select pivot
2. Divide L, E, G
3. Recurse

How to select pivot?

Proposal: select first (A[0]) or last (A[N-1])
element.

Assume: all elements distinct, any permutation
of elements in A is equally likely

What is the expected runtime?

Runtime Analysis of Quicksort

Average case:

T(N) = O(N) + 2 T(N/2)
N

N/2

N/4

N/2

N/4 N/4 N/4

… … … …

Runtime Analysis of Quicksort

Worst case:

T(N) = O(N) + O(1) + T(N-1)

T(N-1) = O(N-1) + O(1) + T(N-2)

T(N-2) = O(N-1) + O(1) + T(N-3)

…
Worst case is O(n2), which is not very good!

Can use randomization to improve.

Randomized (“Paranoid”) Quicksort

TLDR: Naive pivot selection works well in expectation (and in practice!), but a
poorly selected pivot can make quicksort very slow.

Want to know: Is there a good way to select a pivot that guarantees a good “split”,
without compromising the runtime of the algorithm?

Claim: Randomly selecting the pivot is pretty good

Randomized (“Paranoid”) Quicksort

Suppose we can select a pivot in O(n) time such that

N/4 ≤ |L|, |G| ≤ 3N / 4.

Then,

T(n) ≤ O(n) + T(n/4) + T(3n/4).
N

N/4

N/1
6

3N/4

3N/
16

3N/
16

9N/
16

… … … …

Also evaluates to
O(n log n).

Pivot Selection

Now, need to select pivot in O(n) time.

Question: If we randomly select from all indices in the array, what is the probability
that the pivot we select is “good”?

P(good) = ½ ⇒ in expectation, repeat the process twice.

Conclusion

Quicksort:

- Expected time complexity: O(n log n)
- Space complexity: O(1)
- In practice:

- Can assume O(n log n) even without checking if the pivot is “good”

Quicksort vs Merge sort:

- Quicksort: When space is more important
- Merge sort: Better on very large datasets, or when stability is important

Exercises
Warmup: Implement a not-in-place version of quicksort.

1. Implement in-place quicksort, using the last element of the array as a pivot.

2. Implement the “paranoid” randomized quicksort where you repeatedly select a pivot until it’s
“good”, meaning the minimum size of L or G is at least N/4. Remember to keep the
partitioning in-place!
a. Hint: you can do this with very little modification to your code from part 1.
b. Try experimenting with different “parameters” for pivot selection: eg, what if you set the

minimum size as L/3? L/5?

3. Challenge: Come up with a quicksort algorithm that is guaranteed to run in O(n log n) time.
a. Hint: https://brilliant.org/wiki/median-finding-algorithm/ may be of use.
b. Don’t worry if your code for this runs slower than your code from part 2, or even from part 1.

Remember that time complexities are asymptotic metrics, meaning that a good-looking time
complexity may still have a long runtime due to high constant overheads.

Tip: Use datetime libraries to track the amount of time each algorithm takes to run.

https://brilliant.org/wiki/median-finding-algorithm/

