Quicksort

Randomized Algorithms: Week 2 Summer HSSP 2023 Emily Liu

Sorting Algorithms

Task: Given a list A of **comparables**, arrange them in increasing order.

- Comparable: for all elements (a, b) in A, we can say exactly one of the following is true:
 - a>b
 - a < b
 - a = b

Question: What sorting algorithms do you know?

Selection Sort

```
SELECTION SORT(A):
 for i = 1 ... N-1:
   min idx = i
   for j = i+1 ... N:
     if A[j] < A[min idx]:
       min idx = j
     endif
   endfor
   swap A[min idx], A[i]
```

endfor

High level algorithm: At each step, find minimum element in unsorted portion of array, swap with current element.

Questions:

- What is the time complexity of selection sort?
- What is the space complexity of selection sort?

Insertion Sort

```
INSERTION SORT(A):
for j = 2 ... N:
   key = A[j]
   i = j - 1
   while (A[i] > key and i > 0):
     swap(A[i+1], A[i])
     i++
   endwhile
  A[i+1] = key
```

endfor

High level algorithm: At each step, take first element of unsorted portion of the array, insert it into the right place in the sorted portion of the array.

Questions:

- What is the time complexity of insertion sort?
- What is the space complexity of insertion sort?

Merge Sort

MERGE_SORT (A) :

- A_left = MERGE_SORT (A[0:N/2])
- A_right = **MERGE_SORT**(A[N/2:N])
- A = **MERGE** (A left, A right)

MERGE(A_left, A_right):

```
l, r, count = 0; merged = empty array
```

while count < N:</pre>

```
merged = min(A left[1], A right[r])
```

```
if A_left[1] < A_right[r]: l++, else: r++</pre>
```

count++

endwhile

High level algorithm: Recursively break down the array into halves and sort, then merge the sorted halves in linear time.

Questions:

- What is the time complexity of merge sort?
- What is the space complexity of merge sort?

Comparison of Sorting Algorithms

Algorithm	Time Complexity	Space Complexity
Selection Sort	O(n ²)	O(1)
Insertion Sort	O(n ²) average/worst case O(n) best case	O(1)
Merge Sort	O(n log n)	O(n)
In-place Merge Sort	O(n ² log n)	O(1)

Quick Sort

QUICK SORT(A):

- 1. Select a **pivot** index, p.
- 2. Denote subarrays L (less), E (equal), G (greater)
- 3. Rearrange array such that:

all elements in L are to the left of A[p],

all elements in G are to the right of A[p]

4. Recursively sort L and G using QUICK_SORT.

Space complexity of Quicksort

Claim: We can perform quicksort in-place.

Procedure:

- 1. Select A[N-1] (last element) to be pivot.
- 2. Define counters $L = 0 \dots N-2$; $R = N-2 \dots 0$.
- 3. Advance L and R until A[L] > pivot, A[R] < pivot
- 4. Swap A[L], A[R]
- 5. Continue until L = R
- 6. Insert pivot into right place

Question: What is the time complexity of this procedure?

Pivot Selection

Quicksort algorithm:

- 1. Select pivot
- 2. Divide L, E, G
- 3. Recurse

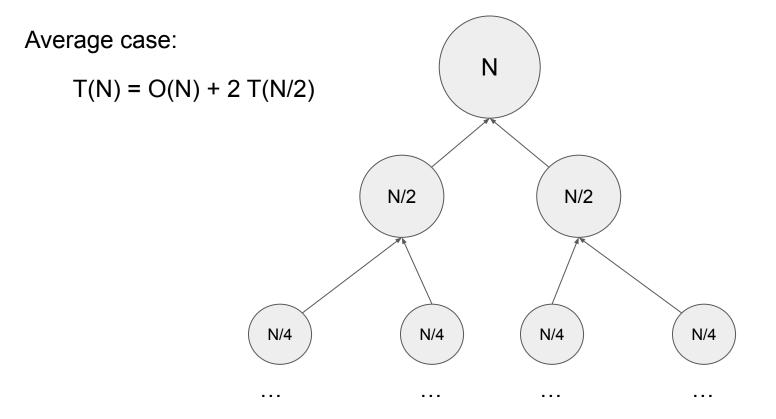
How to select pivot?

Proposal: select first (A[0]) or last (A[N-1]) element.

Assume: all elements distinct, any permutation of elements in A is equally likely

What is the expected runtime?

Runtime Analysis of Quicksort



Runtime Analysis of Quicksort

Worst case:

. . .

T(N) = O(N) + O(1) + T(N-1)T(N-1) = O(N-1) + O(1) + T(N-2)T(N-2) = O(N-1) + O(1) + T(N-3)

Worst case is **O**(n²), which is not very good!

Can use randomization to improve.

Randomized ("Paranoid") Quicksort

TLDR: Naive pivot selection works well in expectation (and in practice!), but a poorly selected pivot can make quicksort very slow.

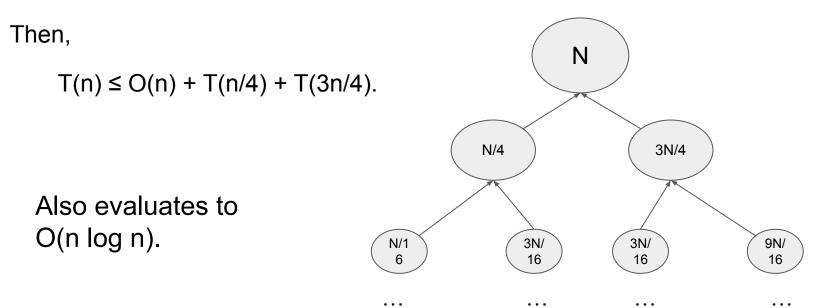
Want to know: Is there a good way to select a pivot that guarantees a good "split", without compromising the runtime of the algorithm?

Claim: Randomly selecting the pivot is pretty good

Randomized ("Paranoid") Quicksort

Suppose we can select a pivot in O(n) time such that

 $N/4 \leq |L|, |G| \leq 3N / 4.$



Pivot Selection

Now, need to select pivot in O(n) time.

Question: If we randomly select from all indices in the array, what is the probability that the pivot we select is "good"?

bad pivots	good pivots	oad pivots
$\frac{n}{4}$	$\frac{n}{2}$	$\frac{n}{4}$

 $P(good) = \frac{1}{2} \Rightarrow$ in expectation, repeat the process **twice**.

Conclusion

Quicksort:

- Expected time complexity: O(n log n)
- Space complexity: O(1)
- In practice:
 - Can assume O(n log n) even without checking if the pivot is "good"

Quicksort vs Merge sort:

- Quicksort: When space is more important
- Merge sort: Better on very large datasets, or when stability is important

Exercises

Warmup: Implement a not-in-place version of quicksort.

- 1. Implement in-place quicksort, using the last element of the array as a pivot.
- 2. Implement the "paranoid" randomized quicksort where you repeatedly select a pivot until it's "good", meaning the minimum size of L or G is at least N/4. Remember to keep the partitioning in-place!
 - a. Hint: you can do this with very little modification to your code from part 1.
 - b. Try experimenting with different "parameters" for pivot selection: eg, what if you set the minimum size as L/3? L/5?
- 3. Challenge: Come up with a quicksort algorithm that is guaranteed to run in O(n log n) time.
 - a. Hint: <u>https://brilliant.org/wiki/median-finding-algorithm/</u> may be of use.
 - b. Don't worry if your code for this runs slower than your code from part 2, or even from part 1. Remember that time complexities are *asymptotic* metrics, meaning that a good-looking time complexity may still have a long runtime due to high constant overheads.

Tip: Use datetime libraries to track the amount of time each algorithm takes to run.